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When are Superconductors Really Superconducting?
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While the most striking aspect of superconductivity is dissipation-free current flow, it is
not straightforward to experimentally demonstrate whether the resistance is truly zero or
“merely” immeasurably small. The distinction between zero or very small resistance is im-
portant, because the true superconducting state can be destroyed by thermodynamic fluctu-
ations. This paper discusses a variety of different superconducting systems: two-dimensional
superconductors, Josephson-junction arrays, and three-dimensional superconductors in zero
and nonzero magnetic field, and the experiments conducted to determine which, and under
what conditions, systems are really superconducting.

KEY WORDS: superconductivity; phase transitions; Kosterlitz-Thouless transition; vortex-glass
transition.

1. INTRODUCTION

The hallmark of superconductivity, and the basis
of its name, is zero resistance for temperature T be-
low a transition temperature Tc. Since the discovery
of superconductivity, much research has been done
to understand the limits of this zero resistance state
[1]. It is known, for example, that a magnetic field
greater than the critical field Hc(T) will destroy su-
perconductivity in a type-I superconductor, as will a
current density greater than the critical current den-
sity Jc(T).

One other property that determines whether the
resistance goes to zero, or is, perhaps, just very small,
is the spatial dimensionality of the system, D. In zero
magnetic field, and for small currents, we know that
the resistance is not strictly zero for one-dimensional
systems. The resistance is zero for D = 3, and for
D = 2, some systems do not have zero resistance,
while others will. Interestingly, the two-dimensional
superconductors that have zero resistance also have
zero critical current.

Roughly 50 years ago, two remarkable theo-
ries provided us with an understanding of supercon-
ductivity. The phenomenological Ginzburg-Landau
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theory assumed a superconducting order parameter
analogous to the order parameter in other second-
order phase transitions. The Ginzburg-Landau the-
ory has been very successful in describing the be-
havior of superconductors on the macroscopic level.
The microscopic Bardeen-Cooper-Schrieffer theory
showed that a weak attractive electron–electron in-
teraction leads to a superconducting state. Both the-
ories, however, make mean-field assumptions [1]. Be-
cause of this, thermal fluctuations are not taken into
account, and fluctuations make the existence of zero
resistance a subtle and interesting question.

At any nonzero temperature, fluctuations occur
because a system can borrow an energy kT from
its environment. For T < Tc, this makes it possible
to temporarily increase the energy of a small vol-
ume of superconductor, perhaps enough to drive the
small volume into the normal state. The effects of
such fluctuations may be relatively benign, perhaps
weakening superconductivity without destroying it.
Under the right circumstances, however, fluctuations
can destroy the superconducting state.

There are two key physical quantities, the
correlation length ξ, and the correlation time τ, that
together characterize the fluctuations [2]. In three
dimensions, the correlation length diverges at Tc,
varying as

ξ ∼ ε−ν (1)
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Fig. 1. Schematic picture of a superconducting wire, shown in gray.
The fluctuation (shown in black) is large enough to cross the entire
wire, making the system essentially one dimensional and destroy-
ing the superconductivity.

where ε = |T − Tc|/Tc and ξ is the size of a typical
fluctuation. Above Tc, ξ is the size of superconducting
regions that occur as fluctuations in the normal back-
ground, and below Tc, ξ is the size of normal fluctua-
tions in the superconducting background. The corre-
lation time varies as

τ ∼ ξz ∼ ε−zν (2)

and is a measure of the lifetime of fluctuations.
Eqs. (1) and (2) contain the static and dynamic criti-
cal exponents ν and z which characterize the diverg-
ing length and time scales. Note that for the special
case of D = 2, the correlation length diverges, but not
as a power of ε. For D = 2, however, τ will still vary
as ξz.

It is instructive to briefly consider the case where
D = 1. In order to be in the one-dimensional limit,
a superconducting wire must be close enough to Tc

for the correlation length, ξ(T), to be larger than
the diameter of the wire. In this limit, at nonzero
temperature there will be fluctuations that are large
enough to drive the entire cross section of the sam-
ple normal, as shown schematically in Fig. 1. This will
cause a nonzero resistance, and will destroy the long-
range coherence in the sample. Since the probability
of such a fluctuation is given by a Boltzmann factor,
it is nonzero (although perhaps very small), so for
T > 0 the resistance will be greater than zero. Mike
Tinkham and his collaborators studied superconduc-
tors in D = 1 extensively, as discussed in Refs. 1
and 3.

I first worked on this type of problem in the
early 1980s with David Abraham, Teun Klapwijk,
and Mike Tinkham [4,5]. At the time, there was
much interest in the Kosterlitz-Thouless transition,
which was proposed as a theoretical description of
the phase transition in D = 2 neutral superfluids [6].
While it was at first thought that the Kosterlitz-
Thouless transition should not occur in superconduc-
tors, it was later shown theoretically that it should oc-
cur in large but finite samples if the two-dimensional

penetration depth were large enough [7]. As de-
scribed in Section 2, we studied this problem in two-
dimensional square lattices of Josephson junctions
with zero external magnetic field, and were able
to observe a key signature of the transition in our
experiments.

The discovery of high-temperature supercon-
ductors brought about renewed interest in the
Kosterlitz-Thouless transition. Many papers repor-
ted a Kosterlitz-Thouless transition in high-tempera-
ture superconductors. The transition was sometimes
reported in quite thick samples, presumably because
the materials are sufficiently anisotropic to decou-
ple the Cu----O planes from each other, making even
thick samples effectively two dimensional. Section 3
of this paper describes work done by Max Repaci and
other members of my group at Maryland on single-
unit-cell films of YBa2Cu3O7−δ in zero magnetic field
[8]. These samples are presumably as two dimen-
sional as you can get in a cuprate, yet we showed
that they did not undergo a Kosterlitz-Thouless tran-
sition. The resistance of these unit-cell thick films re-
mained nonzero (but very small) to very low tem-
peratures because their two-dimensional penetration
depths are too small, in marked contrast with the
Josephson arrays of Section 2.

It seemed natural to next study the D = 3 su-
perconducting phase transition in thick high-Tc films.
Because of their short coherence lengths, long pen-
etration depths, and high-transition temperatures,
fluctuations play a much greater role in high-Tc su-
perconductors than in low-Tc superconductors [9].
Given our work in D = 2, the D = 3 transition in
zero magnetic field seemed like a good place to start.
Doug Strachan began this work, but found, surpris-
ingly, that results disagreed with theory. We decided
to try our experiment in a magnetic field, because
there were a very large number of recent theoreti-
cal and experimental papers on the topic, with theory
and experiment agreeing that a new type of phase
transition (depending on the type of pining in the
sample, a vortex-glass [2] or a Bose-glass [10] tran-
sition) occurred in a field. Our experimental results
in magnetic field were very similar to other people’s
results. When analyzing our data, however, our con-
clusions were not in agreement with most others’:
The resistance did not go to zero, suggesting that the
superconducting phase transition does not occur in
magnetic field for D = 3 [11]. These results are dis-
cussed in Section 4.

Building on the results obtained in mag-
netic field, we returned to the D = 3 zero field
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experiments. The results were disturbing: The zero-
field results were very similar to the nonzero field
results. In particular, the resistance did not appear
to be going to zero in the manner expected as tem-
perature was lowered. Matt Sullivan showed [12]
that our samples were not sufficiently three dimen-
sional: Even in very thick films (0.32 µm), the exper-
iment’s length scales were limited by the film thick-
ness. These results are discussed in Section 5.

2. KOSTERLITZ-THOULESS TRANSITION
IN JOSEPHSON-JUNCTION ARRAYS

As discussed briefly in Section 1, thermal fluctu-
ations will cause resistance below Tc in a supercon-
ductor if the correlation length, ξ, is larger than the
diameter of a superconducting wire. The situation is
subtler in two dimensions.

To study superconductivity in D = 2, one can
make very thin films. While this approach works [13],
it can be difficult to make films that are very thin and
very uniform.

Another approach is to make square lattices of
Josephson junctions. As discussed in Refs. 1, 5, 14,
and 15, square Josephson-junction arrays are a dis-
crete version of a two-dimensional superconductor,
with the advantage that properties such as the pen-
etration depth can be varied by changing the critical
currents of the junctions.

As shown by Kosterlitz and Thouless (KT) [6],
the essential fluctuations to consider are vortex–
antivortex pairs. Since we are considering zero exter-
nal magnetic field here, there will be an equal number
of vortices and antivortices. KT showed that if the
vortex–antivortex interaction is logarithmic in sepa-
ration, a vortex-unbinding transition occurs. Below a
characteristic temperature TKT, each vortex is bound
to an antivortex, while above TKT, some vortices will
thermally unbind.

In a two-dimensional Josephson-junction array,
vortex–antivortex pairs interact via

U = �oic ln
(

r
a

)
(3)

where �o = h/2e is the flux quantum, ic is the
temperature-dependent critical current of one junc-
tion, r is the distance between the vortex and the an-
tivortex centers, and a is the lattice spacing of the
array [15]. Eq. (3) is true only if

r < λ⊥, (4)

where λ⊥ is the penetration depth for two-dimensio-
nal samples, given by

λ⊥ = �o

2πµoic
. (5)

As long as the sample size is greater than λ⊥, Eq. (4)
will always be satisfied, and a KT transition can be
observed, as first shown in Refs. 7. Note that, by mak-
ing ic smaller, λ⊥ can be made as large as needed to
guarantee that Eq. (4) is true.

Given that the KT transition was predicted to
occur, how would one observe it in a Josephson ar-
ray? Since there are free vortices present for T > TKT,
there will be a flux-flow resistance. The prediction for
this is

RHN = c1Rn e−
[

c2TKT
T−TKT

]1/2

. (6)

Here Rn is the normal-state resistance of the array,
and c1 and c2 are constants of order unity [7,16]. (The
formula for arrays is more complicated, but this thin-
film Halperin-Nelson version is sufficient for the dis-
cussion here. See Ref. 15.) There are subtle prob-
lems with the formula, however: It is only correct
for small currents, and for temperatures close to TKT,
though the definitions of “close to” and “small” are
nontrivial. Nevertheless, as other people measuring
thin films and arrays before us had found [17], Eq. (6)
seemed to agree with the data. This is shown in Fig. 2.

Fig. 2. Voltage vs. temperature at a constant 10 µA current for a
1000 × 1000 Josephson-junction array. Data are open circles, and
solid labeled H-N (Halperin-Nelson) theory is a fit to the complete
form of Eq. 6. From Ref. 4.
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When we arrived at this point in the research,
Mike Tinkham made a typical Tinkham comment.
He told us that it is easy to fit data to reasonable
three-parameter functions, and that Eq. (6) was rea-
sonable: It predicted that the resistance should drop
as the temperature was lowered. He reminded us that
a single overdamped junction with small critical cur-
rent would have a measurable resistance due to ther-
mal fluctuations that also dropped rapidly as the tem-
perature was lowered. In the limit of small current,
the prediction for this is [18]

RAH = Rn

[
Io

(
�oic

πkT

)]−2

≈ Rn
2�oic

kT
e− 2�o ic

πkT . (7)

Here Io is the zeroth-order-modified Bessel function,
and the approximate version holds when the argu-
ment of the Bessel function is much greater than
one.

While Eq. (7) is nonzero for T > 0, it does pre-
dict a rapid drop in resistance as the temperature is
lowered. At first sight, in fact, it was hard to prove
that Eq. (7) did not explain the data, especially since
ic depended on T in a manner that was not precisely
known from experiment.

Fortunately, Ref. 16 provided a more demand-
ing way to test the KT theory. For T ≤ TKT, they
showed that the voltage should be a power of the
current, of the form

V ∝ Ia(T). (8)

where Eq. (8) is also restricted to small currents. A
striking prediction of the Halperin-Nelson theory is
that just below TKT,

a(TKT−) = 3. (9)

Eq. (6) predicts ohmic behavior just above TKT, so
that V is proportional to I, or

a(TKT+) = 1. (10)

The KT transition should thus cause a discontinu-
ous change in the power-law behavior at TKT. By
contrast, Eq. (7) predicts ohmic behavior for all
temperatures.

The way to see this behavior is to plot current–
voltage (IV) curves on a log–log plot, as is done
in Fig. 3. Since log(V) = a(T) log(I) + constant, the
slope of the log–log IV curves should change from
3 to 1 at TKT. The result of this is shown in Fig. 4,
where a slightly broadened jump from 3 to 1 can be
seen around T = 2.4 K. Note that Eq. (8) not only

Fig. 3. Log voltage vs. log current for a square Josephson-junction
array. These data represent a small subset of the actual data, and
were generated by reading points off of continuous IV curves orig-
inally made on an XY plotter. Curve at upper left has T = 2.75 K,
right most curve has T = 1.95 K.

implies zero resistance, but also zero critical current,
for T < TKT.

As further proof that Eq. (7) does not account
for the data, Ref. 5 shows that RAH(TKT) = 0.82RN,
while, of course, RHN(TKT) = 0. The evidence for a
KT transition in our arrays was thus very strong, indi-
cating that these two-dimensional samples are indeed
superconducting.

Fig. 4. a(T) vs. T taken from the slopes of log I–log V plots for
voltages in the 10-nV range. From data in Ref. 4.
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3. ABSENCE OF A KOSTERLITZ-THOULESS
TRANSITION IN CUPRATE
SUPERCONDUCTORS

At the University of Maryland, Max Repaci
made and measured single-unit-cell-thick films of
YBa2Cu3O7−δ to see if a Kosterlitz-Thouless tran-
sition occurred [8]. In such films, vortex–antivortex
pairs interact via a potential

U = 2πn∗
s

h2

m∗ ln
(

r
ξ

)
(11)

where n∗
s is the number of Cooper pairs per unit area

[5]. Note that Eq. (11) is of the same form as Eq. (3).
Like Eq. (3), Eq. 11 is true only if r < λ⊥, where in a
superconductor of thickness d,

λ⊥ = λ2

d
, (12)

where λ is the bulk penetration depth for the material
[18].

The passage of a decade allowed us the signifi-
cant advantage of easily acquiring data with a com-
puter. IV curves for a typical sample are shown in
Fig. 5. (The advantages of Fig. 5 over Fig. 3 are very
great indeed!)

Figure 5 certainly appears to show a supercon-
ducting transition. At the highest temperatures, the
IV curves are ohmic, with slope 1 on a log–log plot.
At the lowest temperatures, the voltage drops very
rapidly as a function of current, with no indication
of ohmic behavior. At intermediate temperatures,
the voltage drops rapidly as a function of current at
high currents, and is ohmic at low currents. The low-
current ohmic “tails” are no longer visible for tem-
peratures below about 22 K on the plot.

The question is, do the ohmic tails disappear be-
cause the sample becomes superconducting (presum-
ably by undergoing a KT transition), or do they con-
tinue to occur at voltages below the resolution of the
voltmeter? A good way to explore this issue is to plot
d log(V)/d log(I) vs. log(I), as is done in Fig. 6. From
Eqs. (6) and (8), we expect that d log(V)/d log(I) = 1
for T > TKT, d log(V)/d log(I) = 3 for T = TKT, and
d log(V)/d log(I) = a(T), with a(T) > 3, for T < TKT,
all at low currents.

Rather than showing a KT transition, Fig. (6) in-
dicates that there is not a phase transition at all. At
the highest temperatures, d log(V)/d log(I) = 1 for
all currents, indicating the normal state. As the tem-
perature is lowered, d log(V)/d log(I) > 1 at interme-
diate currents, but bends back down toward 1 at low

Fig. 5. Current–voltage characteristics plotted on a log–log scale
for a unit-cell thick YBa2Cu3O7−δ film in zero magnetic field.
Lines connecting the points are guides for the eye. The dashed line
near the bottom of the plot has a slope of 1, representing ohmic
behavior. Temperatures range from 40 K at the top to 10 K at the
bottom. From Ref. 8.

currents. As the temperature is lowered further, the
trend down is still evident, but d log(V)/d log(I) does
not reach 1 because of limited voltmeter sensitiv-
ity. Furthermore, it is clear that there is no isotherm
where d log(V)/d log(I) = 3 or any other larger con-
stant over any appreciable range of current.

The simplest explanation for Fig. (6) is that there
is not a KT transition, perhaps because λ⊥ is smaller
than the sample size. As discussed in Ref. 8, the
data imply that λ⊥(T = 0) ≈ 160 µm. Equation (12),
combined with single-crystal measurements of λ(0),
imply a value of λ⊥(T = 0) which is a factor of 4
smaller than the estimate in Ref. 8, as might be ex-
pected given that single crystals are cleaner and have
much higher transition temperatures than unit-cell
films. Both estimates are smaller than the 200 µm
sample width, so that Eq. (11) is not valid for all
vortex–antivortex pairs in the sample. Indeed, when
r > λ⊥, the interaction energy approaches a con-
stant, which guarantees that more widely separated
vortex–antivortex pairs will be thermally unbound
at all nonzero temperatures [8,15]. The absence of
a KT transition, and the occurrence of nonzero re-
sistance at low temperatures, are thus in agreement
with theory.
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Fig. 6. d log(V)/d log(I) as a function of current. Temperatures
range from 10 K at the upper right to 60 K at the bottom. Lines
connecting the points are guides for the eye. From Ref. 8.

Note that Eq. (12) implies that thicker samples
are even less likely to undergo a KT transition. We
concluded that YBa2Cu3O7−δ does not undergo a
KT transition—earlier work failed to distinguish be-
tween very small resistance and zero resistance.

4. THREE-DIMENSIONAL
SUPERCONDUCTORS IN A
MAGNETIC FIELD

Starting with the pioneering theoretical work of
Fisher [19] and experimental work of Koch et al. [20],
a new picture of the transition for bulk type-II super-
conductors in a magnetic field emerged in the early
1990s [21]. On the basis of work done on conven-
tional superconductors, it had been believed that a
magnetic field led to nonzero (although possibly ex-
tremely small) resistance [1]. The new consensus was
that a transition to a true zero-resistivity state occurs
in the presence of a magnetic field. Various theories
have been proposed for this phase transition, includ-
ing a vortex-glass transition [2,19], which is predicted
to occur when disorder in the superconductor is un-
correlated, and a Bose-glass transition [10], which is
predicted to occur in the presence of correlated dis-
order. While these theories apply to different situa-

Fig. 7. Current–voltage characteristics plotted on a log–log scale
for a 220-nm-thick YBa2Cu3O7−δ film in 4 tesla magnetic field.
The dashed line at the lower left has slope 1, while the solid lines
at 81, 75, and 70 K are fits to simple power laws. The inset is R(T)
vs. T in ambient field. From Ref. 11.

tions, both predict that the resistivity should be zero
below a transition temperature.

Doug Strachan at Maryland decided to take an-
other look at this problem [11,21], based on difficul-
ties in understanding our measurements of bulk sam-
ples in zero field. Figure 7 shows IV curves from a
typical high-quality YBa2Cu3O7−δ thick film. (This
film was laser ablated onto a SrTiO3 substrate and
had a thickness of 220 nm.) The pinning in such sam-
ples is uncorrelated, so theory predicted, and many
earlier experiments seemed to confirm, that a vortex-
glass transition should occur.

Qualitatively, Fig. 7 is very similar to Fig. 5. We
used the same approach to examine the data more
carefully, by plotting a d log(V)/d log(I) vs. log(I)
plot, shown in Fig. 8. This graph is very similar to
Fig. 6.

It is important, however, to remember that this is
a three-dimensional sample, while the data shown in
Figs. 5 and 6 come from a two-dimensional sample,
so one cannot draw conclusions about the presence
or absence of a phase transition based on Eqs. (8)–
(10). Fortunately, scaling [2,21] leads to testable pre-
dictions for the behavior of IV curves.

The basic prediction is that

V
I

= ξD−2−zχ±

(
IξD−1

T

)
, (13)
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Fig. 8. Small solid circles are d log(V)/d log(I) as a function of cur-
rent. The open symbols are extrapolated data based on scaling
showing a change in slope from positive to negative as temper-
ature is lowered—a signature of the phase transition that is not
present in the actual data. From Ref. 11.

where ξ and z are defined in Eqs. (1) and (2), and χ±
are two unknown functions, one (+) for above Tc, the
other (−) below Tc.

Eq. (13) has two useful limiting forms. For small
currents and T ≥ Tc, it can be shown that

V
I

∼ ξD−2−z ∼ εν(2+z−D), (14)

where ε is defined below Eq. (1). We thus see that
samples should be ohmic for small currents above Tc.
Note that if D = 2 and z = 2, this reproduces Eq. (6)
when the two-dimensional equation for ξ is used, see
Refs. 5,7, and 16.

The second useful limiting form applies for T =
Tc (and only at T = Tc), where Eq. (13) implies that

V ∼ I(z+1)/(D−1). (15)

Note that, for z = 2 and D = 2, Eq. (15) agrees with
the KT result, Eq. (8).

Standard scaling analysis assumes that a transi-
tion does occur. Assuming this to be correct for the
time being, Eq. (15) predicts that the IV curve at
T = Tg should be a straight line on a log–log plot,
with slope given by (z + 1)/(D − 1). (I use Tg here in
place of Tc to indicate that the measurements are in
field.) The dark solid line drawn in Fig. 7 is a power-
law fit to the IV curve at 81 K which looks closest to

a power law (i.e., it looks straight on a log–log plot.).
Using D = 3 and Eq. (15), this determines a value of
z = 5.46.

Following the standard analysis, we next use
Tg = 81 K, z = 5.46, and Eq. (14) to determine ν. The
resistances RL are read off of the low-current tails in
Fig. 7, and plotted on a log–log plot, as shown in the
inset to Fig. 9a. It is seen that below about 87 K, a

Fig. 9. Collapses of the data from Fig. 7 using Eq. (16), using dif-
ferent values for Tg. All of the data collapses look good, which
demonstrates that the technique can be too flexible if used uncrit-
ically. From Ref. 11.
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good fit is obtained, with deviations at higher tem-
peratures. Equation (14) yields a value ν = 1.5, again
consistent with other values in the literature.

Equation (13) can be rewritten as

V
I

ξ2+z−D = χ±

(
IξD−1

T

)
. (16)

Equation (16) predicts that a plot of Vξ2+z−D/I
against IξD−1/T should “collapse” all of the data in
the critical regime onto one of two curves, χ+ for
T ≥ Tg and χ− for T ≤ Tg. This data collapse is shown
in Fig. 9a.

The data collapse shown in Fig. 9a is very im-
pressive to the eye. The apparent success of the data
collapse is widely taken to indicate the data scale.
This, in turn, would indicate that a phase transition
has taken place.

Unfortunately, Fig. 8 and Eq. (15) taken to-
gether indicate that a phase transition has not taken
place. No nonnormal state data in Fig. 8 fall on a
straight horizontal line, as predicted by Eq. (15).

The problem is that the scaling approach must
be applied with more caution. Note that qualitatively,
at least, all the isotherms with T ≤ 81 K appear to be
straight over some range in V in Fig. 7. (Note, how-
ever, that Fig. 8 indicates that this is not true.) They
would thus all appear to satisfy Eq. (15), which sug-
gests that Tg may not be uniquely determined by the
standard procedure. To test this idea, we did the stan-
dard scaling analysis with a different value of Tg =
75 K. The result of this scaling analysis is graphed
in Fig. 9b. Remarkably, this data collapse also looks
very good.

Taking this to the extreme case, Fig. 9c shows
the result of choosing Tg = 70 K, the lowest tempera-
ture measured in the experiment. Here, since all the
data are from temperatures above the nominal Tg, all
the data collapse onto only one curve, corresponding
to χ+ in Eq. (9). Once again, the collapse appears to
be quite good.

The problem with the conventional scaling col-
lapse approach is that it is too flexible, as Fig. 9 shows.
A more stringent test of scaling is to use Eq. (13)
to generate predictions based on extrapolation of
the actual data, as is done in the open symbols in
Fig. 8. These extrapolations show a clear signature
of the phase transition which is not present in the ac-
tual data: All curves tend toward ohmic behavior at
low currents for T > Tg, while all curves diverge for
T < Tg, with a break at at the critical isotherm. On
the basis of this analysis, we concluded that the data

are inconsistent with the occurrence of a supercon-
ducting phase transition.

5. THREE-DIMENSIONAL
SUPERCONDUCTORS IN ZERO
MAGNETIC FIELD

While the data discussed in the previous section
strongly indicated that the resistance became small
but not zero at lower temperatures, they did not tell
us why there was no superconducting phase transi-
tion. Were the old theories, which predicted small
but nonzero resistance in a magnetic field, correct af-
ter all? Or was something else going on?

It seemed like a good time to return to the D = 3
zero magnetic field experiment, which Matt Sullivan
did [12]. The existence of a superconducting phase
transition in this case is not in doubt, and further-
more, there are theoretical estimates for the critical
exponents ν and z. Very close to Tc(|T − Tc| smaller
than about 2 K [9]), the transition is expected to be
of the three-dimensional XY type, with ν ∼= 0.67 and
z = 2 for diffusive dynamics [2]. Interestingly, how-
ever, researchers have found vortex-glass like expo-
nents ν ∼= 1.1 and z ∼= 8.3 in small fields (<10 mT)
[22] while others find three-dimensional XY expo-
nents when extrapolating to zero field from higher
fields [23] and in crystals [24].

Figure 10 is a log(V)–log(I) plot for a 210-
nm-thick YBa2Cu3O7−δ film in zero magnetic field

Fig. 10. Current–voltage characteristics for a 210-nm YBa2Cu3
O7−δ film in zero magnetic field. Curves are separated by 60 mK.
The dashed line indicates a slope of 1, or ohmic behavior. Inset
shows R(T) at 10 µA. From Ref. 12.
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Fig. 11. d log(E)/d log(J ) vs. I for the IV curves of Fig. 10. The
inset shows the 91.26 K isotherm for three-bridges widths on the
same film, 20 µm (solid line), 50 µm (dashed line), and 100 µm
(dotted line), which do not agree as a function of I. From Ref. 12.

[12]. Once again, the data are qualitatively consistent
with a transition occurring, with ohmic low-current
tails being visible for T > 91.26 K, and not being visi-
ble at lower temperatures.

Figure 11 is a derivative plot for the data in
Fig. 10. It is qualitatively similar to Eqs. (6) and (8).
In particular, if a phase transition were present, there
would be one curve, at T = Tc, that is straight and
horizontal, separating curves at higher temperature
with positive derivative from those at lower tem-
perature with negative derivative. As with the other
derivative plots in this paper, this is not what is seen
here: A simpler explanation of the data is that all of
the underlying curves are the same, with the only dif-
ferences being due to voltmeter resolution.

Earlier work had pointed out the possibility that
in thin films, fluctuation dynamics can cross over
from three-dimensional to two-dimensional behavior
[2,25,26]. The idea is that a current density J probes
fluctuations of a typical size LJ given by [2]

LJ =
(

ckT
�oJ

)1/2

(17)

where c is a constant of order the YBa2Cu3O7−δ

film anisotropy parameter, about 0.2. As long as
LJ < d, the film thickness, the measurements will be
probing three-dimensional fluctuations. Once LJ >

d, however, the measurements will be probing two-
dimensional fluctuations.

Fig. 12. d log(E)/d log(J ) vs. J for three different-width samples
fabricated from the same film. The crossover from nonohmic to
ohmic behavior clearly depends on J . From Ref. 12.

This crossover from three dimensions to two
dimensions provides a qualitative explanation for the
behavior seen in Fig. 11, and can also be checked
quantitatively. The inset to Fig. 12 shows derivative
plots taken on samples with three different widths
made from the same film and measured at the same
temperature, and it is seen that the curves do not
lie on top of each other. (They would fall on top of
each other if the effect depended on current instead
of current density.) By contrast, Fig. 13 plots data

Fig. 13. 1/
√

Jmin vs. d for eight different thickness films. The
straight line fit indicates quantitatve agreement with Eq. (18).
From Ref. 12.
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from the same three samples using current density
J as a variable, rather than current I. Within experi-
mental uncertainty, all three curves at any given tem-
perature lie on top of each other, in agreement with
Eq. (17).

To further test Eq. (17), Matt Sullivan made
films with thicknesses varying between 95 nm and
320 nm. Using a method described in Ref. 12, he in-
ferred a value of the current, Jmin, at which deviations
from three-dimensional behavior first occur. If this
deviation occurs when LJ = d, then Eq. (17) predicts
that

Jmin = ckT
�od2

. (18)

Figure 13 shows that this is indeed the case. Quite
remarkably, the IV curves are dominated by finite-
thickness effects, even in quite thick films.

6. SUMMARY AND CONCLUSIONS

I have discussed a number of different systems—
two-dimensional Josephson-junction arrays, two-
dimensional unit-cell YBa2Cu3O7−δ films, and three-
dimensional thick (fractions of a micrometer)
YBa2Cu3O7−δ films. In two dimensions, whether or
not the KT transition occurs depends on the width W
of the sample relative to λ⊥. In the arrays, W < λ⊥,
and the signature of the KT transition, a change from
cubic to linear IV curves at TKT, can be seen. In unit-
cell YBa2Cu3O7−δ films, W > λ⊥, and the transition
is not seen.

In three-dimensional samples, scaling provides a
powerful tool for determining whether or not sam-
ples are truly superconducting. While a “by eye” data
collapse such as those shown in Fig. 9 can lead to the
mistaken conclusion that a transition has occurred,
when the technique is used carefully it is very power-
ful. Our in-field data were not consistent with a tran-
sition to a state of zero resistance, which led us to
suggest that a vortex-glass transition may not occur.
Quite alarmingly, our zero-field data led us to a simi-
lar conclusion. In the latter case, however, we believe
that ubiquitous finite-size effects interrupt the transi-
tion, even in our thickest films.

An important question is whether finite-thick-
ness effects are causing the samples to not become
superconducting in field, or something else is hap-
pening. This question is currently being pursued
at Maryland. In addition, we are making measure-
ments on single crystals, which are very much thicker
than films. Our initial results indicate that finite size

effects are not visible in the crystals, but more work
is needed. Finally, we are measuring other proper-
ties, such as microwave response and heat capacity,
which are independent ways of studying whether or
not samples are really superconducting.
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